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Series Editor’s Foreword

By the dawn of the new millennium, robotics has undergone a major trans-
formation in scope and dimensions. This expansion has been brought about
by the maturity of the field and the advances in its related technologies. From
a largely dominant industrial focus, robotics has been rapidly expanding into
the challenges of the human world. The new generation of robots is expected
to safely and dependably co-habitat with humans in homes, workplaces, and
communities, providing support in services, entertainment, education, health-
care, manufacturing, and assistance.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across di-
verse research areas and scientific disciplines, such as: biomechanics, haptics,
neurosciences, virtual simulation, animation, surgery, and sensor networks
among others. In return, the challenges of the new emerging areas are prov-
ing an abundant source of stimulation and insights for the field of robotics.
It is indeed at the intersection of disciplines that the most striking advances
happen.

The goal of the series of Springer Tracts in Advanced Robotics (STAR)
is to bring, in a timely fashion, the latest advances and developments in
robotics on the basis of their significance and quality. It is our hope that the
wider dissemination of research developments will stimulate more exchanges
and collaborations among the research community and contribute to further
advancement of this rapidly growing field.

The monograph written by Cyrill Stachniss is a contribution in the area
of self-localization and mapping (SLAM) for autonomous robots, which has
been receiving a great deal of attention by the research community in the
latest few years. The contents expand the authors doctoral dissertation and
are focused on the autonomous mapping learning problem. Solutions include
uncertainty-driven exploration, active loop closing, coordination of multiple
robots, learning and incorporating background knowledge, and dealing with
dynamic environments. Results are accompanied by a rich set of experiments,
revealing a promising outlook toward the application to a wide range of
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mobile robots and field settings, such as search and rescue, transportation
tasks, or automated vacuum cleaning.

Yet another STAR volume on SLAM, a very fine addition to the series!

Naples, Italy
February 2009

Bruno Siciliano
STAR Editor



Foreword

Simultaneous localization and mapping is a highly important and active area
in mobile robotics. The ability to autonomously build maps is widely re-
garded as one of the fundamental preconditions for truly autonomous mobile
robots. In the past, the SLAM has mostly been addressed as a state esti-
mation problem and the incorporation of control into the map learning and
localization process is a highly interesting research question. In this book by
Cyrill Stachniss, the reader will find interesting and innovative solutions to
the problem of incorporating control into the SLAM problem. I know Cyrill
since over eight years and I still appreciate his enthusiasm in developing new
ideas and getting things done. He has been working with a large number
of different robots, participating in several public demonstrations, and has
gained a lot of experience which can also be seen from his large number of
papers presented at all major robotic conferences and in journals. His work
covers a variety of different topics. He has acquired several project grants and
received several awards. He furthermore is an associate editor of the IEEE
Transactions on Robotics. It’s safe to say that he is an expert in his field.

This book is a comprehensive introduction to state-of-the-art technology in
robotic exploration and map building. The reader will find a series of solutions
to challenging problems robots are faced with in the real world when they
need to acquire a model of their surroundings. The book focuses on autonomy
and thus the robot is not supposed to be joysticked though the world but
should be able to decide about his actions on its own. I regard the ability
to learn maps by making own decisions as a key competence for autonomous
robots. Cyrill rigorously applies probabilistic and decision-theoretic concepts
to systematically reducing the uncertainty in the belief of a robot about its
environment and its pose in the environment.

The book contains impressively demonstrates the capabilities of the de-
scribed solutions by showing results obtained from real robotic datasets.
A further strength lies in the sound and thorough evaluation of all pre-
sented techniques going beyond the world of simulation. At this point, I
would like to encourage the reader to follow Cyrill’s example to take real
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robots and data obtained with real robots to demonstrate that novel ap-
proaches work in reality. For readers not in possession of particular sensors
or for comparison purposes, Cyrill and colleagues have created a Web site
(http://www.openslam.org/) in which the community can share implemen-
tations of SLAM approaches and where the reader will find links to datasets
to support future research.

Freiburg, Germany
February 2009

Wolfram Burgard



Preface

Models of the environment are needed for a wide range of robotic applica-
tions including search and rescue, transportation tasks, or automated vac-
uum cleaning. Learning maps has therefore been a major research topic in
the robotics community over the last decades. Robots that are able to reliably
acquire an accurate model of their environment on their own are regarded as
fulfilling a major precondition of truly autonomous agents. To autonomously
solve the map learning problem, a robot has to address mapping, localization,
and path planning at the same time. In general, these three tasks cannot be
decoupled and solved independently. Map learning is thus referred to as the
simultaneous planning, localization, and mapping problem. Because of the
coupling between these tasks, this is a complex problem. It can become even
more complex when there are dynamic changes in the environment or several
robots are being used together to solve the problem.

This book presents solutions to various aspects of the autonomous map
learning problem. The book is separated into two parts. In the first part, we
assume the position of the robot to be known. This assumption does not hold
in the real world, however, it makes life easier and allows us to better con-
centrate on certain aspects of the exploration problem such as coordinating a
team of robots. We describe how to achieve appropriate collaboration among
exploring robots so that they efficiently solve their joint task. We furthermore
provide a technique to learn and make use of background knowledge about
typical spatial structures when exploring an environment as a team.

In the second part, we relax the assumption that the pose of the robot is
known. To deal with the uncertainty in the pose of a robot, we present an
efficient solution to the simultaneous localization and mapping problem. The
difficulty in this context is to build a map while at the same time localizing the
robot in this map. The presented approach maintains a joint posterior about
the trajectory of the robot and the model of the environment. It produces
accurate maps in an efficient and robust way. After addressing step-by-step
the different problems in the context of active map learning, we integrate
the main techniques into a single system. We present an integrated approach
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that simultaneously deals with mapping, localization, and path planning. It
seeks to minimize the uncertainty in the map and in the trajectory estimate
based on the expected information gain of future actions. It takes into account
potential observation sequences to estimate the uncertainty reduction in the
world model when carrying out a specific action. Additionally, we focus on
mapping and localization in non-static environments. The approach allows
a robot to consider different spatial configurations of the environment and
in this way makes the pose estimate more robust and accurate in non-static
worlds.

In sum, the contributions of this book are solutions to various problems of
the autonomous map learning problem including uncertainty-driven explo-
ration, SLAM, active loop closing, coordination of multiple robots, learn-
ing and incorporating background knowledge, and dealing with dynamic
environments.

A lot of the work presented in this book has been done in collaboration
with other researchers. It was a pleasure for me to work with all the wonder-
ful people in the AIS lab in Freiburg. First of all, I thank Wolfram Burgard
for his tremendous support, his inspiration, and for providing a creative at-
mosphere. My thanks to my friends and colleagues for the great time in the
lab, especially to Maren Bennewitz, Giorgio Grisetti, Dirk Hähnel, Óscar
Mart́ınez Mozos, Patrick Pfaff, Christian Plagemann, and Axel Rottmann
for the great collaboration on the topics addressed in this book. It was a
pleasure to work with all these people and to benefit from their knowledge.
My thanks also to Mark Moors and Frank Schneider for the collaboration on
multi-robot exploration. Special thanks to Nick Roy and Mike Montemerlo
who did a great job in developing and maintaining the Carnegie Mellon Robot
Navigation Toolkit. It was a pleasure for me to work together with all of them.

Additionally, I thank several people, who published robot datasets and in
this way helped to make mapping approaches more robust and more easily
comparable. In this context, I would like to thank Patrick Beeson, Mike Bosse,
Udo Frese, Steffen Gutmann, Dirk Hähnel, Andrew Howard, and Nick Roy.

Freiburg, Germany
December 2008

Cyrill Stachniss
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Notation

Throughout this book, we make use of the following notation:

variable description
xt pose of the robot at time step t. This pose is a three

dimensional vector containing the x, y-position and the
orientation θ of the vehicle

x1:t sequence of poses of the robot from time step 1 to time
step t

zt sensor observation obtained at time step t
ut odometry information describing the movement from xt

to xt+1

a action or motion command
w importance weight

w
[i]
t importance weight of the i-th particle at time step t

m grid map
c grid cell
r resolution of a grid map. Each cell covers an area of r by

r.
G topological map

E[] expectation
N (μ, Σ) Gaussian with mean μ and covariance Σ

H entropy
I information gain
U utility function
V cost function
η normalizer, typically resulting from Bayes’ rule

Neff effective number of particles



1

Introduction

Models of the environment are needed for a wide range of robotic applications,
from search and rescue to automated vacuum cleaning. Learning maps has
therefore been a major research focus in the robotics community over the last
decades.

In general, learning maps with single-robot systems requires the solution
of three tasks, which are mapping, localization, and path planning. Mapping is
the problem of integrating the information gathered with the robot’s sensors
into a given representation. It can be described by the question “What does
the world look like?” Central aspects in mapping are the representation of
the environment and the interpretation of sensor data. In contrast to this,
localization is the problem of estimating the pose of the robot relative to a
map. In other words, the robot has to answer the question, “Where am I?”
Typically, one distinguishes between pose tracking, where the initial pose of
the vehicle is known, and global localization, in which no a priori knowledge
about the starting position is given. Finally, the path planning or motion
control problem involves the question of how to efficiently guide a vehicle to
a desired location or along a trajectory. Expressed as a simple question, this
problem can be described as, “How can I reach a given location?”

Unfortunately, these three tasks cannot be solved independently of each
other. Before a robot can answer the question of what the environment looks
like given a set of observations, it needs to know from which locations these
observations have been made. At the same time, it is hard to estimate the
current position of a vehicle without a map. Planning a path to a goal location
is also tightly coupled with the knowledge of what the environment looks like
as well as with the information about the current pose of the robot.

The diagram in Figure 1.1 depicts the mapping, localization, and path
planning tasks as well as the combined problems in the overlapping areas.
Simultaneous localization and mapping (SLAM) is the problem of building a
map while at the same time localizing the robot within that map. One cannot
decouple both tasks and solve them independently. Therefore, SLAM is often
referred to as a chicken or egg problem: A good map is needed for localization

C. Stachniss: Robotic Mapping and Exploration, STAR 55, pp. 3–6.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



4 1 Introduction

active
localization

integrated
approaches

mapping localization

exploration

path planning/
motion control

SLAM

Fig. 1.1. Tasks that need to be solved by a robot in order to acquire accurate
models of the environment. The overlapping areas represent combinations of the
mapping, localization, and path planning tasks [94].

while an accurate pose estimate is needed to build a map. Active localization
seeks to guide the robot to locations within the map to improve the pose
estimate. In contrast to this, exploration approaches assume accurate pose
information and focus on guiding the robot efficiently through the environ-
ment in order to build a map. The center area of the diagram represents the
so-called integrated approaches which address mapping, localization, and path
planning simultaneously. The integrated approaches are also called solutions
to the simultaneous planning, localization, and mapping (SPLAM) problem.
A solution to the SPLAM problem enables a mobile robot to acquire sensor
data by autonomously moving through its environment while at the same
time building a map. Whenever the robot is moving, it considers actions to
improve its localization, to acquire information about unknown terrain, and
to improve its map model by revisiting areas it is uncertain about. In the
end, the robot is assumed to have learned an accurate model of the whole
environment as well as determined its own pose relative to this model.

Several researchers focus on different aspects of these problems. This is
done using single robot systems as well as teams of robots. The use of mul-
tiple robots has several advantages over single robot systems. Cooperating
robots have the potential to accomplish a task faster than a single one. Fur-
thermore, teams of robots can be expected to be more fault-tolerant than
a single robot. However, when robots operate in teams, there is the risk of
possible interference between them. The more robots that are used in the
same environment, the more time each robot may spend on detours in order
to avoid collisions with other members of the team. In most approaches, the
performance of the team is measured in terms of the overall time needed to
learn a map. This means that the robots need to be distributed over the
environment in order to avoid redundant work and to reduce the risk of in-
terference. A team of robots makes finding efficient solutions to problems
like exploration more complex, since more agents are involved and so more
decisions need to be made.
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It is worth mentioning that all these problems become even more complex
in the case where the environment changes over time. Most mapping tech-
niques assume that the environment is static and does not change over time.
This, however, is an unrealistic assumption, since most places where robots
are used are populated by humans. Changes are often caused by people walk-
ing through the environment, by open and closed doors, or even by moved
furniture. One possibility to deal with dynamic aspects is to filter them out
and to map the static objects only. More challenging, however, is the problem
of integrating the information about changes into the map and utilizing such
knowledge in other robotic applications. This can enable a mobile robot to
more efficiently execute its tasks. For example, one can expect a robot to
more robustly localize itself in case where it knows about the typical config-
urations of the non-static aspects in its surroundings.

In summary, the key problems in the context of map learning are the
questions of

• where to guide a robot during autonomous exploration,
• how to deal with noise in the pose estimate and in the observations,
• how to deal with the uncertainty in the robot’s world model and how to

interprete the sensor data,
• how to model changes in the environment over time, and
• how to efficiently coordinate a team of mobile robots.

The contributions presented in this book are solutions to different aspects
of the map learning problem which explicitely consider these five aspects. We
present approaches to autonomous exploration that take into account the un-
certainty in the world model of the robot. We minimize this uncertainty by
reasoning about possible actions to be carried out and their expected reward.
We furthermore describe how to achieve good collaboration among a team of
robots so that they efficiently solve an exploration task. Our approach effec-
tively distributes the robots over the environment and in this way avoids re-
dundant work and reduces the risk of interference between vehicles. As a re-
sult, the overall time needed to complete the exploration mission is reduced.
To deal with the uncertainty in the pose of a robot, we present a highly ac-
curate technique to solve the SLAM problem. Our approach maintains a joint
posterior about the trajectory of the robot and the map model. It produces
highly accurate maps in an efficient and robust way. In this book, we ad-
dress step-by-step the problems in the context of map learning and integrate
different solutions into a single system. We provide an integrated approach
that simultaneously deals with mapping, localization, and path planning. It
seeks to minimize the uncertainty in the map and trajectory estimate based on
the expected information gain of future actions. It takes into account poten-
tial observation sequences to estimate the uncertainty reduction in the world
model when carrying out a specific action. Additionally, we focus on mapping
and localization in non-static environments. Our approach allows the robot
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to consider different spatial configurations of the environment and in this way
makes the pose estimate more robust and accurate in non-static worlds.

This book is organized as follows. First, we introduce the particle filtering
technique and the ideas of grid maps. The first part of this book concentrates
on single- and multi-robot exploration given the poses of the robots are known
while they move through the environment.

Chapter 3 addresses the problem of decision-theoretic, autonomous explo-
ration with a single vehicle. We consider a sensor which is affected by noise
and investigate a technique to steer a robot through the environment in order
to reduce the uncertainty in the map model.

In Chapter 4, we explore how to coordinate a team of robots in order to
achieve effective collaboration and to avoid redundant work. The presented
approach is extended in Chapter 5 so that background information about the
structure of the environment is integrated into the coordination procedure.
The knowledge about different structures is learned by the mobile robots
from sensor data.

In the second part of this book, we relax the assumption of known poses
and consider the uncertainty in the pose the a mobile robot. We present in
Chapter 6 an efficient solution to the SLAM problem. It allows us to learn
highly accurate grid maps while the pose information of the robot is affected
by noise. Our technique maintains the joint posterior about the map and the
trajectory of the robot using a particle filter. Chapter 7 describes a system
to detect and to actively close loops during exploration. With this technique,
we are not optimizing the pose estimation procedure but are planning ap-
propriate trajectories for the mobile robot. The revisiting of known locations
from time to time allows the robot to reduce the uncertainty in its pose. As
a result, the obtained map is better aligned and shows less inconsistencies.

Actively revisiting known areas during SLAM offers not only the possibility
to relocalize a vehicle, it also introduces the risk of becoming overly confident
especially in the context of nested loops. To cope with this limitation, we
present in Chapter 8 an approach for recovering the particle diversity after
closing loops. This allows the robot to stay an arbitrary period of time within
a loop without depleting important state hypotheses.

In Chapter 9, we present a decision-theoretic approach to exploration with
respect to the uncertainty in the map and the pose estimate of the robot. The
presented algorithm integrates different techniques introduced in the preced-
ing chapters. It simultaneously addresses mapping, localization, and planning.
As a result, our approach enables a real mobile robot to autonomously learn
a model of the environment with low uncertainty even if its pose estimates
are affected by noise.

Finally, Chapter 10 addresses the problem of mapping and localization
in non-static environments. By explicitly modeling the different states the
environment is observed in, the robot is able to more robustly localize itself
in a non-static world.


